Quantile autoregression neural network model with applications to evaluating value at risk

نویسندگان

  • Qifa Xu
  • Xi Liu
  • Cuixia Jiang
  • Keming Yu
چکیده

We develop a new quantile autoregression neural network (QARNN) model based on an artificial neural network architecture. The proposed QARNN model is flexible and can be used to explore potential nonlinear relationships among quantiles in time series data. By optimizing an approximate error function and standard gradient based optimization algorithms, QARNN outputs conditional quantile functions recursively. The utility of our new model is illustrated by Monte Carlo simulation studies and empirical analyses of three real stock indices from the Hong Kong Hang Seng Index (HSI), the US S&P500 Index eywords: rtificial neural network uantile autoregression neural network QARNN) uantile autoregression uantile regression (S&P500) and the Financial Times Stock Exchange 100 Index (FTSE100). © 2016 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Copula-based nonlinear quantile autoregression

Parametric copulas are shown to be attractive devices for specifying quantile autoregressive models for nonlinear time-series. Estimation of local, quantile-specific copula-based time series models offers some salient advantages over classical global parametric approaches. Consistency and asymptotic normality of the proposed quantile estimators are established under mild conditions, allowing fo...

متن کامل

Issues on quantile autoregression ∗

We congratulate Koenker and Xiao on their interesting and important contribution to the quantile autoregression (QAR). The paper provides a comprehensive overview on the QAR model, from probabilistic aspects, to model identification, statistical inferences, and empirical applications. The attempt to integrate the quantile regression and the QAR process is intriguing. It demonstrates surprisingl...

متن کامل

The Comparison of Applying a Designed Model to Measure Credit Risk Between Melli and Mellat Banks

The main purpose of this paper is providing a model to calculate the credit risk of Melli bank clients and implement it at Mellat Bank. Therefore, the present study uses a multi-layered neural network method. The statistical population of this research is all real and legal clients of Melli and Mellat banks. Sampling method used in this research is a simple random sampling method. Friedman test...

متن کامل

Quantile Autoregression

We consider quantile autoregression (QAR) models in which the autoregressive coefficients can be expressed as monotone functions of a single, scalar random variable. The models can capture systematic influences of conditioning variables on the location, scale and shape of the conditional distribution of the response, and therefore constitute a significant extension of classical constant coeffic...

متن کامل

The optimized model of factors effecting on the Merger and Acquisition from multiple dimensions with neural network approach.

Nowadays, firms apply the merger and acquisition strategy for gaining synergy, increasing the wealth of stockholders, economics of scales, enhancing efficiency, increasing the ability to research and develop, developing the firm and decreasing the risk. Developing an optimized model with the ability to identify the effective variables on the merger and acquisition process has a significant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2016